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In this online appendix, we provide supplementary results and discussion for the paper
“Measuring Risk Information.” Section 1 assesses when information on market-level risk
introduces a bias in our measure, and shows how to empirically test for such a bias. Section
2 provides a steady-state version of our equilibrium model. Section 3 provides simulations
that demonstrate the efficacy of our measure to greater variation in the discount rate and its
robustness to the steady-state equilibrium model. Section 4 develops an alternative version
of our measure that estimates information on the risk of total assets and demonstrates that
this version of the measure also passes our validation tests. Section 5 extends our tests of
text-based proxies for risk to conference calls. Section 6 provides evidence on the relation
between coverage and earnings-announcement volatility. Finally, Section 7 documents the
relationship between RiskInfot and announcement-date returns.
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1. RiskInfot and Information on Market-Level Risk

In this section, re-conduct the analysis in the main text allowing for the event to reveal
information relevant for predicting the market-level return variance. Our goals are to: (i)
determine when this information leads to a bias, (ii) assess how bias may be minimized,
and (iii) derive a means to empirically assess the magnitude of the bias created by such
information in a given setting. Stated in formal terms, we now allow for the possibility that:
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Unless the proportion of the risk information in the announcement that is systematic vs.
idiosyncratic remains constant over time, this will also tend to lead to a violation of the
condition used to derive AnnV art1,t2 in the main text,
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Thus, we also relax this assumption. In particular, we assume now only that this condition
holds for the exposures that are not revealed by the announcement, i.e.,
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Furthermore, we assume that, for the exposures revealed by the announcement, the expected
variance is constant under the actual, as opposed to risk-neutral, return distribution:
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Intuitively, this requires only that the announcement reveals the same amount of total in-
formation on risk over time – the fraction of this information that is systematic may now
vary over time. As in the main text, this assumption is likely violated in many settings, such
as when the firm’s risk is mean-reverting. However, this is likely to introduce measurement
error, rather than bias, into the measure.
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Given these relaxed assumptions, letting π̃t denote the SDF process, we now have:
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We see that there is now an additional deterministic component in the change in implied
variance, which equals the covariance between the revealed risk exposures and the SDF,∫ τD+t

τD
covτ−D

[
σ̃2
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]
ds. Under essentially all standard equilibrium and empirical models,

this covariance is positive, i.e., assets that are positively exposed to the variance earn negative
returns (e.g., Heston (1993), Bansal and Yaron (2004), Campbell et al. (2018)). Moreover,
note that:
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where the second line applies equation (1) and the third line applies equation (2) together
with the fact that, for any random variable x̃, EQ
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[x̃] = Eτ−D [x̃] + covτ−D

[x̃, π̃]. Now, let
̂RiskInfot = t ∗∆IVt + AnnV art1,t2 denote our estimator of RiskInfot. Assuming t1 = t,
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we have:
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reveals three important facts about the effect of information on market-level risk on our
measure:

1. Any news on the market-level variance before the horizon of risk information one seeks
to calculate does not create a bias in the measure. In this sense, information on the
“short-term” market-level return variance does not influence the measure. The reason
is that, while such information pushes down ∆IVt, it has a precisely offsetting positive
impact on AnnV art,t2 . Intuitively, AnnV art,t2 is derived from the difference between
the implied variances from options of maturity t and t2 > t prior to the announcement.
Information on the return variance prior to date t causes the variance risk premium to
be disproportionately large in an option with maturity t relative to one with maturity
t2, which leads to an increase in AnnV art,t2 .

2. News on the systematic variance between dates τD + t and τD + t2 negatively bi-
ases the measure. Thus, choosing two options with close maturities when calculating
AnnV art1,t2 minimizes such bias.

3. Because the bias, should it exist, is always negative, one can empirically assess the
magnitude of this bias. In particular, a small sample-wide mean of ̂RiskInfot indicates
the bias is small, while a large negative sample-wide mean of ̂RiskInfot indicates the
bias is significant.

2. A Steady-State Equilibrium Model

In this section, we develop a steady-state version of the equilibrium model that we present
in the paper’s Appendix A. Specifically, we consider a Lucas-tree style model in which a
firm continuously pays dividends. Investors face uncertainty regarding both the covariance
between these dividends and consumption and idiosyncratic dividend volatility. On an an-
ticipated date, news arrives regarding the level of future dividends, their variance, and their
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covariance with consumption. Formally, consider a representative investor who trades in a
firm’s stock and options over a time interval [0,∞). This investor has time-additive CRRA
utility:

Ut

(
{c̃s}s∈[t,∞)

)
=

∫ ∞
t

e−δ(s−t)c̃1−α
s

1− α
ds,

and has consumption that evolves as:1

dc̃t
c̃t

=
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i=1

σf,idW
c
i,t.

The Brownian motions
{
dW c

i,t

}
i∈{1,...,k−1} denote the priced risk factors in the economy, and

the coefficients σf,i determine their associated risk premia.
The firm pays a dividend x̃t at time t, where x̃t follows the following stochastic process:

dx̃t = x̃tµxdt+ x̃t

k−1∑
i=1

β̃idW
c
i,t + x̃tσ̃ε,tdW

ε
t + dNx

t ; (3)

dσ̃2
ε,t = κε

(
σ̃2
ε,t − θε

)
dt+ ξεσ̃ε,tdW

σε
t , (4)

and where all Brownian motions in the model are independent. The investor observes W ε
t at

date t, which leads the equilibrium price to continuously evolve. Note the terms β̃i capture
the firm’s systematic risk-factor exposures, while σ̃ε,t, which follows a CIR process, captures
the firm’s time-varying idiosyncratic volatility. The assumption that the firm’s risk-factor
exposures are constant allows for a simple closed-form expression for price, but is not essential
for the results.

As in Appendix A, at time τD that is known in advance to the investor, an announcement
occurs. The firm’s dividend process exhibits a jump on the date of the information event,
which is captured by dNx

t , where:

Nx
t = x̃τ−D

(
exp

(
J̃x

)
− 1
)
∗ 1 (t ≥ τD) ,

where J̃x is independent of other variables in the model. We again assume that this announce-
ment perfectly resolves all distributional uncertainty, i.e., it perfectly reveals

{
β̃i

}
i∈{1,...,k−1}

and {σ̃ε,t}t∈[τD,T ]. In order to ensure that there exists an equilibrium price, we assume that,

1Growth in consumption can be incorporated into the model with no change in the results, outside of a
shift in the risk-free rate.
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for any realization of
{
β̃i

}
i∈{1,...,k−1}

,

r − µx + α
k−1∑
i=1

β̃iσf,i > 0.

We next derive the firm’s equilibrium price process.

Proposition 1. Let r = δ − α(1+α)
2
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2
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On date τD, the firm’s price jumps, such that:
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Proof. Let C̃t ≡ ln (c̃t). Standard arguments imply that, in this economy, a necessary
condition for the representative agent’s first-order condition to be satisfied is that there
exists a stochastic-discount factor process Mt, where (e.g., Back (2010)):

Mt = e−δt
c̃−αt
c−α0

(9)

= exp
[
−δt− α

(
C̃t − C0

)]
.
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This implies the date t price of a bond paying off 1 dollar at date s > t equals:
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Substituting, applying iterated expectations, and simplifying, we have that:
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To evaluate the expectations in this expression, note that, as of date t, conditional on
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Furthermore,
∫ s
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Note that, as t → τ−D , the region of the above integral on which 1 (τD ∈ (t, s]) = 0 shrinks
towards zero. Moreover, on this region, the integrand in the above expression is bounded.
Consequently, applying the bounded convergence theorem, the above expression reduces to:
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which verifies equality (5). Next, for t ≥ τD, note that:
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. Applying Ito’s
lemma to the above expression, for t ≥ τD,
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dPt = µxx̃tRpdt+ x̃tRp

k−1∑
i=1
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c
i,t + x̃tRpσ̃ε,tdW

ε
t (20)

= Pt
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i=1
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c
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ε
t

)
,

which completes the derivation of equation (7).

The price process in the model matches the one in the main text upon setting µt = µx

and:

σ̃i,t = β̃i for t ∈ [τD,∞), i = 1, ..., k − 1; (21)

σ̃k,t = σ̃ε,t for t ∈ [τD,∞);

ỹ = J̃x − lnEτ−D
[
exp

(
J̃x

)]
;

g
(
{σ̃i,t}i∈{1,...,k}
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= ln


(
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∑k−1
i=1 β̃iσ

2
f,i
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[(
r − µx − α

∑k−1
i=1 β̃iσ

2
f,i

)−1
]
 .

In the next section, we simulate this model and show that our measure is effective at capturing
the risk information in the event.

3. Additional Simulations

In this section, we conduct two additional simulations, which we summarize below.
1. Simulating the Steady-State Model. We first simulate the model in the previous

section. We assume that J̃x ∼ N
(
−1

2
σ2
J , σ

2
J

)
and adjust θε to match σ̃2

ε,0 in order to ensure
that the stock and variance price paths begin in steady state, and again focus on a single
risk factor W c

1,t, and thus a single risk-factor exposure, β̃1 and assume that it is uniformly
distributed on [βL, βH ]. As in the simulations in the text, we calculate the measures using
ATM option prices and examine 30-day and 182-day versions of our measure. We assess the
average absolute deviation between the measure and the true change in investors’ beliefs.
The parameters and results are summarized in Figure 1. The figure shows that the average
error in our measure remains below 10%.

2. Additional variation in the discount rate. We next consider how the error in
our measure varies with the amount of variation in the discount rate on the earnings date.
This lets us assess whether information on firms’ betas creates an error in our measure.
We conduct these simulations under the same specification applied in the simulations in
the main text. As discussed in the text, information on firms’ betas can create return
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Figure 1. This figure displays the results of our simulations. In these simulations, we vary σ2
J , ξε,

and σ̃2
ε,0 = θε on a 63 dimensional grid ranging uniformly over [0, 0.3] × [0, 0.3] × [0.3, 1] and fix

κ = 2. We then set δ such that the risk-free rate r is 4% and choose α, σf,1, βH and βL such that the
stock’s average discount rate in excess of r is 5%, and such that, following the announcement, the
discount rate varies by +/- 20 bps. For each set of parameters, we first generate variance paths and
option prices. We then calculate our measure using these option prices and calculate the percentage
error as the difference between the measure and the true change in the market’s beliefs regarding
the firm’s risk as a fraction of the average level of firm risk over the relevant horizon. The plots
depict the average percentage error as the parameters vary.

Figure 2. This figure displays the performance of our measure as a function of variation in the
discount rate. In these simulations, we set σ2

J = 0.152, ξε = 0.15, σ̃2
ε,0 = θε = 0.65, κ = 2, and set δ

such that the risk-free rate r is 4%. For each set of parameters, we first generate variance paths and
option prices. We then calculate our measure using these option prices and calculate the percentage
error as the difference between the measure and the true change in the market’s beliefs regarding
the firm’s risk as a fraction of the average level of firm risk over the relevant horizon.
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autocorrelation, which can cause AnnV ar to overshoot the true expected return variance
on the announcement date. Figure 2 depicts the parameters and results. It shows that the
error in our measure grows with the amount of discount rate variation. However, even when
the firm’s discount rate varies uniformly between +/− 2%, the error in the measure remains
below 10%. To put this in perspective, recall that we find the difference between the firm’s
cost of capital in the upper and lower quintiles of RiskInfo is 40 basis points in our quarterly
earnings sample. Thus, even when the variation in discount rate is an order of magnitude
larger than in our sample, the error remains small.

4. Leverage Effects: A Measure of Information on Asset Risk

Prior literature originating with Black (1976) shows that a major determinant of a stock’s
risk arises from the implicit leverage embedded in equity when the firm is financed in part
by debt. This “leverage effect,” and its associated impact on equity risk, increases when
a firm’s expected equity value decreases. Given that our measure is derived from equity
options, it captures an announcement’s information regarding equity risk, and thus captures
this leverage effect. Consistent with this, we show in the main text in the case of quarterly
earnings announcements, positive news tends to decrease, and negative news tends to increase
our measure.

When applying the measure to test hypotheses regarding equity risk, it is, in fact, desir-
able for our measure to capture this leverage effect. However, in some contexts, one might
wish to capture information on the risk of total assets, i.e., the combined risk faced by equity-
and debt-holders. For instance, when evaluating the effects of regulation that requires a novel
disclosure on firm risk, one may seek to understand both how it influences information on
the total risk faced by both equity- and debt-holders.

We next outline a simple approach to calculate a variant of our measure that estimates
asset-level risk. This approach is based upon Bharath and Shumway (2008), who develop
and validate a simple formula for translating equity-level implied volatilities into asset-level
implied volatilities.2 Their formula is as follows:

σV ≈
E

E + F
σE +

F

E + F
(0.05 + 0.25σE) , (22)

where E is the market value of equity, F is the total face value of its debt, and σE is the
implied volatility from equity options. To generate the asset-level version of our measure, we
recalculate RiskInfo30 by replacing implied volatilities with the ex ante and ex post versions

2We are grateful to an anonymous reviewer for suggesting this approach.
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of σV in equation (22). In doing so, we account for changes in firms’ equity prices on the
event date, which effectively adjusts these volatilities for the leverage effect.

When applying the measure to quarterly earnings, we hold constant the total face value of
the firm’s debt at its level on the quarterly earnings date under consideration. This approach
effectively assumes that investors are already aware of any material changes in the firm’s
capital structure that occurred during the quarter before earnings are made public. This is
consistent with such changes being pre-empted via 8-K’s. In more general applications, F
should equal the best estimate of investors’ beliefs regarding the market value of the firm’s
debt.

As an example of how the leverage-corrected measure can be applied, Table 1 of this
document illustrates that the leverage-corrected measure continues to predict changes in
volatility, abnormal volatility, liquidity, spreads, and firm fundamentals. These results sug-
gest the leverage effect is not the exclusive driver of risk information in quarterly earnings
announcements.

5. Textual Analyses of Conference Calls

To supplement our analysis of text-based proxies of risk information, we compare RiskInfot
calculated around firms’ earnings announcements against the level of, and within-firm change
in, the number of uncertainty-related words, as defined in Loughran and McDonald (2011),
used in firms’ conference call transcripts. Uncertain Words (%) equals the percentage of
uncertainty-related words in the conference call. Uncertain Words (Level) equals the log
of one plus the number of uncertainty-related words in the conference call. Similarly,
∆Uncertain Words (%) and ∆Uncertain Words (Level) reflect the within-firm change in
each measure relative to the same quarter in the prior year.

The results in Table 3 of this document shows that text-based proxies based on uncertain
words do not portend increases in volatility. Consistent with the findings in Table 7 of
the main paper, these findings suggest risk-word-based proxies are more likely to reflect
managers’ acknowledgement of or explanation for the level of firms’ risks, than to capture
the novel information investors glean about risks from firms’ 10Ks.

6. Analyst Coverage and Announcement Volatility

Table 3 of the main paper documents a positive relation between COV and AnnV ar,
indicating investors anticipate heightened announcement volatility for firms with greater
analyst coverage. In Table 3 of this document, we verify this relation using firms’ absolute
earnings announcement returns. The heightened volatility for firms with greater coverage is

12



consistent with prior evidence that analysts tend to time their forecast and recommendation
revisions around earnings announcements (e.g., Altınkılıç and Hansen (2009), Altınkılıç et al.
(2013)) and that competition spurs more timely analyst behavior (e.g., Cooper et al. (2001))

7. Risk Information and Returns

Table 4 of this document examines the link between risk information and equity re-
turns. The table contains averages of, and corresponding t-statistics for, firms’ raw and
market-adjusted returns relative to their earnings announcement date, sorted into quintile
portfolios of RiskInfo30. We find that risk information is negatively related to firms’ earnings
announcement returns consistent with investors’ perceptions of risk increasing when firms
report negative information.3

3We find no significant relation between risk information and future returns. The absence of a link with
post-announcement returns can be squared with the finding that ICCs tend to rise with risk information due
to the presence of post-earnings announcement drift (given that negative earnings are associated with an
increase in RiskInfo30) and the fact that realized returns are notoriously noisy as an indication of expected
returns (Elton (1999)).
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Table 1. Leverage Correction

This table contains results from re-estimating our main tests when using a leverage corrected version of our risk information
measure as described in Section 3. RiskInfo30 is our (leveraged corrected) proxy for the amount of information about risk
contained in a firm’s disclosure from 30-day options. ∆IV 30 is the change in 30-day implied variance from standardized
options in the three-day window centered on firms’ announcement date. ∆VLTY 30, is defined as the log of the standard
deviation of firm’s daily returns over the 30 days starting 5 days after the earnings announcement, scaled by the standard
deviation of firm’s daily returns over the 30 days ending 5 days prior to the earnings announcement. ∆ICC is the post- versus
pre-announcement change in firms’ implied cost of capital (ICC) using the estimation approach in Gebhardt et al. (2001).
RiskInfoTerm captures the difference in risk information derived from 30-day and 182-day options. ∆AMIHUD is the within-
firm changes in firms’ Amihud illiquidity ratio, defined as absolute returns scaled by dollar trading volume in the months
surrounding the announcement date. RiskInfoTerm, which captures the difference in risk information derived from 30-day and
182-day options and is defined as RiskInfo30 minus RiskInfo182. VolTime is the post-announcement volatility term-structure,
defined as the difference in the standard deviation of firm’s daily market-adjusted returns from 5 to 35 trading days after the
earnings announcement, relative to the standard deviation of firm’s daily returns from 36 to 187 trading days after the earnings
announcement. ∆IV30 is the change in 30-day implied variance from standardized options in the three-day window centered on
firms’ announcement date and ∆IV182 is defined analogously. IVTime is the level difference in the two implied variance change
measures. ∆AltmanZ − Score and Campbell Proxy reflect the changes in firms’ distress risk as measured by firm’s Altman Z
score and the distress risk proxy from Campbell et al. (2008). ∆R&DSpending in the forward change in firms’ research and
development spending scaled by total assets. SIZE is the log of market capitalization, LBM is the log of firm’s book-to-market
ratio, and SURP is the firms’ analyst-based surprise at their earnings announcement. Firm and year fixed effects are used
throughout. The parentheses contain t-statistics based on standard errors clustered by firm and year.

Panel A: Leverage Correction when Forecasting Volatility

(1) (2) (3) (4)

∆VLTY ∆GLS ∆AMIHUD ∆VW-Spreads

RiskInfo30 0.323*** 5.704** 0.826*** 0.294***
(5.06) (2.86) (2.97) (3.58)

∆IV 30 2.290*** 15.987*** 2.605*** 1.586***
(6.92) (6.55) (7.00) (7.73)

SIZE 0.023*** 0.408*** 0.079*** 0.035***
(4.64) (8.88) (9.76) (6.73)

LBM -0.054*** -1.698*** -0.035 -0.018
(-4.65) (-4.69) (-1.52) (-1.33)

SURP -0.349 -6.129 -2.368*** -1.046***
(-1.58) (-1.71) (-5.14) (-4.70)

N 85690 41436 85704 84570
adj. R2 0.048 0.035 0.070 0.032

Panel B: Leverage Correction when Forecasting Fundamentals

(1) (2) (3) (4)

VolTime ∆Altman Z-Score ∆Campbell Proxy ∆R&D Spending

RiskInfo30 (w/Leverage Correction) – -1.787*** -0.204*** 0.002**
– (-3.32) (-5.83) (2.69)

∆IV 30 – -4.552*** -0.493*** 0.003*
– (-3.76) (-4.61) (1.78)

RiskInfoTerm (w/Leverage Correction) 0.021*** – – –
(5.18) – – –

IV T ime 0.007*** – – –
(3.70) – – –

SIZE -0.023*** -0.470*** -0.046*** 0.000***
(-3.71) (-4.45) (-5.96) (4.10)

LBM 0.014 -0.109 0.019** 0.001***
(0.75) (-1.64) (2.68) (5.83)

SURP -0.305** 1.906* 0.369*** 0.007**
(-2.14) (1.74) (2.85) (2.53)

N 85267 62680 62681 71997
adj. R2 0.061 0.059 0.080 0.009
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Table 2. Analysis of Conference Call Transcripts

Panel A contains Spearman correlations above (below) the main diagonal. ∆IV30 is change in 30-day implied variance from
standardized options in the three-day window centered on firms’ announcement date. SIZE is the log of market capitaliza-
tion, VLTY30 is the standard deviation of firm’s daily returns over the 30 trading days ending 5 days prior to the earnings
announcement, and ∆VLTY30 is the post-announcement change in return volatility, defined as the level difference in the stan-
dard deviation of firm’s daily returns over the 30 trading days starting 5 days after the earnings announcement relative to
VLTY30. Uncertain Words (%) equals the percentage of uncertainty-related words in the conference call. Uncertain Words
(Level) equals the log of one plus the number of uncertainty-related words in the conference call. Similarly, ∆Uncertain Words
(%) and ∆Uncertain Words (Level) reflect the within-firm change in each measure relative to the same quarter in the prior
year. Panel B contains results from regressions of ∆VLTY30 with firm- and time-fixed effects. The sample for this analysis
spans 1996 through 2019 and consists of 52,274 quarterly earnings announcements.

Panel A: Spearman Correlations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) RiskInfo30 0.987 0.496 0.055 0.061 0.006 0.021 0.005 0.006
(2) SRiskInfo30 0.987 0.495 0.047 0.061 0.011 0.020 0.005 0.007

(3) ∆IV30 0.496 0.495 0.124 0.082 0.017 0.033 -0.006 -0.010
(4) SIZE 0.055 0.047 0.124 0.056 -0.282 0.133 -0.016 -0.001

(5) ∆VLTY 0.061 0.061 0.082 0.056 -0.025 -0.032 -0.015 -0.015
(6) UncertainWords (%) 0.006 0.011 0.017 -0.282 -0.025 0.337 0.433 0.256

(7) UncertainWords (Level) 0.021 0.020 0.033 0.133 -0.032 0.337 0.249 0.456
(8) ∆UncertainWords (%) 0.005 0.005 -0.006 -0.016 -0.015 0.433 0.249 0.532

(9) ∆UncertainWords (Level) 0.006 0.007 -0.010 -0.001 -0.015 0.256 0.456 0.532

Panel B: Regressions of Changes in Volatility

(1) (2) (3) (4)

RiskInfo30 4.756*** 4.800*** 4.901*** 4.906***
(5.33) (5.34) (4.88) (4.89)

∆IV30 3.631*** 3.572*** 3.286*** 3.282***
(4.08) (4.03) (3.37) (3.37)

SIZE 0.042** 0.046** 0.054** 0.054**
(2.31) (2.51) (2.58) (2.59)

LBM -0.206** -0.201** -0.205** -0.205**
(-2.73) (-2.68) (-2.41) (-2.41)

SURP -3.087* -3.135** -4.219** -4.229**
(-2.09) (-2.15) (-2.54) (-2.55)

UncertainWords (%) -7.288 – – –
(-1.74) – – –

UncertainWords (Level) – -0.097*** – –
– (-3.79) – –

∆UncertainWords (%) – – -3.869 –
– – (-1.27) –

∆UncertainWords (Level) – – – -0.026
– – – (-1.09)

Obs 52282 52282 46102 46102

Adj. R2 0.045 0.045 0.047 0.047

Firm FE? Y Y Y Y
Year FE? Y Y Y Y
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Table 3. Link Between Analyst Coverage and Absolute Returns

This table contains regression results of the absolute value of three-day market-adjusted earnings announcement returns on
firms’ analyst-based earnings surprises (SURP ) and the log of one plus the number of analysts covering a firm (COV ). Firm
and year-by-NYSE-size-decile fixed effects are used as indicated at the bottom of the table. The parentheses contain t-statistics
based on standard errors clustered by firm and year. The sample for this analysis spans 1996 through 2019 and consists of
87,460 quarterly earnings announcements.

(1) (2)

COV 0.161* 0.168*
(1.72) (1.81)

SURP – -11.502***
– (-2.96)

Obs 83247 83247

adj. R2 0.201 0.202

Firm FE? Y Y
Year x NYSD FE? Y Y
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Table 4. Link Between Risk Information and Returns

This table contains averages of, and corresponding t-statistics for, firms’ raw and market-adjusted returns relative to their
earnings announcement date, sorted into quintile portfolios of RiskInfo30. RiskInfo30 is our proxy for the amount of information
about risk contained in a firm’s disclosure from 30-day options. Quintile portfolios are formed on a rolling basis, using the
distributional breakpoints of RiskInfot from the prior calendar quarter. High-Low denotes the difference between the first and
fifth quintile. RET(-1,+1) corresponds to the three-day cumulative return around firms’ announcement date.

Quintiles of RiskInfo30

Q1 (Low) Q2 Q3 Q4 Q5 (High) High-Low

RET(-1,+1) Raw 2.961 1.430 0.547 -0.533 -3.271 -6.232
(16.03) (10.85) (5.60) -(3.60) -(13.02) -(20.10)

RET(-1,+1) Market-Adj 2.388 1.069 0.270 -0.553 -2.945 -5.333
(17.63) (10.34) (3.39) -(4.40) -(14.07) -(19.68)
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